Comparison of different least-squares mixed finite element formulations for hyperelasticity
نویسندگان
چکیده
منابع مشابه
Multilevel Boundary Functionals for Least-squares Mixed Finite Element Methods
For least-squares mixed nite element methods for the rst-order system formulation of second-order elliptic problems, a technique for the weak enforcement of boundary conditions is presented. This approach is based on least-squares boundary functionals which are equivalent to the H ?1=2 and H 1=2 norms on the trace spaces of lowest-order Raviart-Thomas elements for the ux and standard continuous...
متن کاملNonconforming elements in least-squares mixed finite element methods
In this paper we analyze the finite element discretization for the first-order system least squares mixed model for the second-order elliptic problem by means of using nonconforming and conforming elements to approximate displacement and stress, respectively. Moreover, on arbitrary regular quadrilaterals, we propose new variants of both the rotated Q1 nonconforming element and the lowest-order ...
متن کاملLeast-Squares Finite Element Methods
Least-squares finite element methods are an attractive class of methods for the numerical solution of partial differential equations. They are motivated by the desire to recover, in general settings, the advantageous features of Rayleigh–Ritz methods such as the avoidance of discrete compatibility conditions and the production of symmetric and positive definite discrete systems. The methods are...
متن کاملFinite Element Methods of Least-Squares Type
We consider the application of least-squares variational principles to the numerical solution of partial differential equations. Our main focus is on the development of least-squares finite element methods for elliptic boundary value problems arising in fields such as fluid flows, linear elasticity, and convection-diffusion. For many of these problems, least-squares principles offer numerous th...
متن کاملSuperconvergence of Least-squares Mixed Finite Elements
In this paper we consider superconvergence and supercloseness in the least-squares mixed finite element method for elliptic problems. The supercloseness is with respect to the standard and mixed finite element approximations of the same elliptic problem, and does not depend on the properties of the mesh. As an application, we will derive more precise a priori bounds for the least squares mixed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PAMM
سال: 2016
ISSN: 1617-7061
DOI: 10.1002/pamm.201610108